
www.manaraa.com
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 556–564,

Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

SemEval-2017 Task 11: End-User Development using Natural Language

Juliano Efson Sales, Siegfried Handschuh, André Freitas
Department of Computer Science and Mathematics

University of Passau, Germany
{juliano-sales, siegfried.handschuh, andre.freitas}@uni-passau.de

Abstract

This task proposes a challenge to support
the interaction between users and appli-
cations, micro-services and software APIs
using natural language. It aims to support
the evaluation and evolution of the discus-
sions surrounding the application natural
language processing techniques within the
context of end-user natural language pro-
gramming, under scenarios of high lexical
and semantic heterogeneity.

1 Introduction

The specific syntax of traditional programming
languages and the user effort associated with find-
ing, understanding and integrating multiple inter-
faces within a software development task, defines
the intrinsic complexity of programming. De-
spite the widespread demand for automating ac-
tions within a digital environment, even the ba-
sic software development tasks require previous
(usually extensive) software development exper-
tise. Domain experts processing data, analysts au-
tomating recurrent tasks, or a businessman testing
an idea on the web depend on the mediation of
programmers to materialise their demands, inde-
pendently of the simplicity of the task to be ad-
dressed and on the availability of existing services
and libraries.

Recent advances in natural language process-
ing bring the opportunity of improving the interac-
tion between users and software artefacts, support-
ing users to program tasks using natural language-
based communication. This ability to match users’
actions intents and information needs to formal
actions within an application programming inter-
face (API), using the semantics of natural lan-
guage as the mediation layer between both, can
drastically impact the accessibility of software de-

velopment. Despite the fact that some software
development tasks with stricter requirements will
always depend on the precise semantic definition
of programming languages, there is a vast spec-
trum of applications with softer formalisation re-
quirements. This subset of applications can be de-
fined and built with the help of natural language
descriptions.

This SemEval task aims to develop the state-of-
the-art discussions and techniques concerning the
semantic interpretation of natural language com-
mands and user action intents, bridging the seman-
tic gap between users and software artefacts. The
practical relevance of the challenge lies in the fact
that addressing this task supports improving the
accessibility of programming (meaning a system-
atic specification of computational operations) to a
large spectrum of users which have the demand for
increasing automation within some specific tasks.
Moreover, with the growing availability of soft-
ware artefacts, such as APIs and services, there
is a higher demand to support the discoverabil-
ity of these resources, i.e. devising principled se-
mantic interpretation approaches to semantically
match interface descriptions with the intent from
users.

The proposed task also intersects with demands
from the field of robotics, as part of the human-
robot interaction area, which depends on a sys-
tematic ability to address user commands that lie
beyond navigational tasks.

From the point-of-view of computational lin-
guistics, this challenge aims to catalyse the dis-
cussions in the following dimensions:

• Semantic parsing of natural language com-
mands;

• Semantic representation of software inter-
faces;

556

www.manaraa.com

• Statistical and ontology-based semantic
matching techniques;

• Compositional models for natural language
command interpretation (NLCI);

• Machine learning models for NLCI;

• API/Service composition and associated
planning techniques;

• Linguistic aspects of user action intents.

2 Commands & Programming in
Natural Language

The use of natural language to instruct robots and
computational systems, in general, is an active re-
search area since the 70’s and 80’s (Maas and Sup-
pes, 1985; Guida and Tasso, 1982) (and within ref-
erences). Initiatives vary over a large spectrum of
application domains including operating system’s
functions (Manaris and Dominick, 1993), web ser-
vices choreography (Englmeier et al., 2006), mo-
bile programming by voice (Amos Azaria, 2016),
domain-specific natural programming languages
(Pane and Myers, 2006), industrial robots (Sten-
mark and Nugues, 2013) and home care assistants.

The variability of domains translates into a wide
number of research communities comprising dif-
ferent foci and being expressed by distinct terms
such as natural language interfaces, end-user de-
velopment, natural programming, programming
by example and trigger-action development. Some
of these terms embrace wide domains, also includ-
ing non-verbal (visual) approaches.

2.1 Semantic Parsing & Matching

The interpretation of natural language commands
is typically associated with the task of parsing the
natural language input to an internal representa-
tion of the target system. This internal represen-
tation is usually associated with a n-ary predicate-
argument structure which represents the interface
for an action within the system. The identification
of which action the command refers to and its po-
tential parameters are at the centre of this task.

Taking as an example the natural language com-
mand:

Please convert US$ 475 to the Japanese
currency and send this value to John
Smith by SMS.

We can conceptualise the challenges involved
in the command interpretation process in three di-
mensions: command chunking, term type identi-
fication and semantic matching. The chunking
dimension comprises the identification of terms
and segments in the original sentence that can po-
tentially map to the system actions and parame-
ters. The example command embodies two ac-
tions: converting currency and sending SMS. For
the first action, the command interpreter needs to
identify the currencies involved in the transaction
and the financial amount (term type identification).

Other semantic interpretation processes might
be involved. In the case of the second action, be-
sides identifying John Smith as the message’s re-
ceiver, the interpreter also needs to resolve the co-
reference of this value to the currency conversion
result and instantiate it as a parameter in the con-
tent of the message. This first level of interpre-
tation of the command would generate an output
such as:

SEQUENCY {
ACTION: [convert currency]
PARAMS: [US$ 475] - [(to) Japanese
currency]

ACTION: [send sms]
PARAMS: [this value] - [(to) John
Smith]
}

The matching process corresponds to the map-
ping between terms from the user vocabulary to
the terms used in the internal representation of the
system (the API). In the given example, the system
should find an action that can convert currencies
and another that can send SMS messages.

In the example, depending on the parametri-
sation of the command interface, the value [US$
475] needs to be split into two parameters, and
these parts, mapped to the internal vocabulary of
the system (US$ need to be interpreted as USD
while Japanese currency needs to be translated to
JPY. For the second action, similarly, John Smith
will be used to retrieve a phone number from a
user personal data source.

The final execution command is the result of
the matching processing, as shown below:

ACTION ENDPOINT: [action id]
PARAMS:

557

www.manaraa.com

Figure 1: An overview of the task.

from: “USD”
to: “JPY”
from amount: 475

The task can be addressed using different
semantic interpretation abstractions: shallow
parsing, lambda-calculus-based semantic parsing
(Artzi et al., 2014), compositional-distributional
models (Freitas and Curry, 2014; Freitas, 2015),
information retrieval approaches (Sales et al.,
2016). Additionally, pre-processing techniques
such as clausal disembedding (Niklaus et al.,
2016) and co-reference resolution are central com-
ponents within the task.

While approaches and test collections empha-
sising the shallow parsing aspect of the problem
are more present in the literature (Section 3), oth-
ers focusing on a semantic matching process in-
volving a broader vocabulary gap (Furnas et al.,
1987) are less prevalent. Part of this can be ex-
plained by the domain-specific nature of previous
works (e.g. focus on spatial commands (Dukes,
2014)).

In contrast, this task emphasises the creation
of a test collection targeting an open domain sce-
nario, with a large-scale set of target actions, as-
sessing the ability of command interpretation ap-
proaches to address a larger vocabulary gap. This
scenario aims to instantiate a real use case for end-

user natural language programming, since the ac-
tion knowledge base used in the test collection
maps to real-world APIs and so a semantic inter-
preter developed over this test collection can be-
come a concrete end-user programming environ-
ment.

3 Similar Initiatives

Most of the applications related to the parsing of
natural language commands are within the context
of human-robot interaction. The Human Robot In-
teraction Corpus (HuRIC) describes a list of spo-
ken commands between humans and robots. It
is composed of three datasets which were devel-
oped under the context of three different events.
They are annotated using Frame Semantics to-
gether with Holistic Spatial Semantics (Bastianelli
et al., 2014).

Artzi et al. (2014) and Tellex et al. (2014) give
a more focused contribution in the interpretation
of spatial elements. In both cases, the vocabulary
variability is more constrained. Similar vocabu-
lary variability assumptions are present in Thoma-
son et al. (2015) and Azaria et al. (2016).

In 2014, SemEval hosted a task related to the
parsing of natural language spatial commands
(Dukes, 2014), also targeting a robotics scenario.
More specifically, the task proposed the parsing of
commands to move a robot arm that moved objects

558

www.manaraa.com

within a spatial region.
The proposed task can be contrasted with these

previous initiatives in the following dimensions:
(i) more comprehensive knowledge base of ac-
tions, (ii) generic (open domain) user program-
ming scenarios and (iii) exploration of the inter-
action between actions and user personal informa-
tion (Section 4).

The work that has more similarity with this test
collection is the problem defined by Quirk et al.
(2015) under the ifttt.com platform, which targets
the creation of an if-then receipt from a natural
language description provided by the user. The
first difference between the two tasks is the fact
that, while the program structure is limited to if-
then recipes in Quirk et al., other more complex
structures are supported in this task. Secondly, in
the case of Quirk et al., the task requires only the
mapping of the actions that comprise the recipe,
keeping aside the instantiation of the parameter
values, while our proposed task emphasises both.
Finally, the presence of these two characteristics
introduces the challenge of mapping co-references
and metonymy within the task.

4 Task Definition

The task comprises 210 scenarios which consist
of a total of 438 natural language commands. Fig-
ures 1 and 2 depicts an overview of the task. A sce-
nario is a set of sentences that defines a program
in natural language. The excerpt below shows an
example of a scenario:

“When a message from Enrico Hernan-
dez arrives, get the necklace price; Con-
vert it from Chilean Pesos to Euro; If it
costs less than 100 EUR, send to him
a message asking him to buy it; If not,
write saying I am not interested.”

Associated with each scenario, there is a pro-
gram which is composed of actions from the Ac-
tion Knowledge Base (Action KB). In addition
to the actions, the program also uses If and
Foreach constructors, having the same seman-
tics commonly expressed in programming lan-
guages to define the execution flow.

Like a programming language function, an ac-
tion can have input parameters and return values.
Table 1 shows examples of natural language com-
mands describing scenarios.

Natural language scenario commands
If a receive a deposit from John Sanders in my bank
account, send this message to him: “Hello John,
thanks for your gift, I receive your deposit of some
money to me, thanks a lot, buddy.”
Send an email to Mark asking him for the picture we
took in Munich. When I receive the answer, get the
attached image and publish it on my Flickr account
with the tags #munich, #germany, #my-love
Find “Bachianas N.5 of Villa-Lobos” on Youtube.
Get the link and send to my mum.
List tweets containing #ChampionsLeague.
Find a picture of Darth Vader on Flickr. Post this text
to my friends on Facebook with the picture of Darth
Vader: May The Force Be With Us Next Friday!!!
Search on eBay for the iPhone 7 with the maximum
price of 700 Euro and send the result list by e-mail to
my wife.
Message Dr Brown by email, asking a suitable day for
a meeting; When I receive the information, sent to my
wife by email;
Search for a picture of Yoda. Attach that image in a
Facebook post and write this: Friends, let’s go to the
cinema to the see Star Wars on Friday.
When I receive an email from Helena, get the attach-
ment. Print it and write to Mr Sanders by Skype: Hi
Mr Sanders, the document is in the printer.
If someone reports a problem in GitHub, send the
problem title by Skype to John, if the project name
is FinanceSystem. For all other systems, send a mes-
sage to the Tech Manager.
If Manchester United wins, put Thriller of Michael
Jackson in Spotify “celebrations” playlist and call me
to say “we are the champions, my friends”.
Open the door always when reached Central Park.
Get a quote about science. Get a photo of Paris. At-
tach the photo in an email, write the quote and send
to maria@hotmail.com.
Get the translation of the hashtag #sqn. Convert it to
a QR code and send to my Skype account.

Table 1: Examples of natural language commands
describing scenarios.

The values of the parameters map to constants
(e.g. integer numbers, string values) or to tags,
which represent returning data from previously ex-
ecuted actions. There are two types of tags.

• <returnX> The return tag represents the
content returned by the action X, where X is
a sequential identifier.

• <item> The item tag is used only in the con-
text of Foreach constructors. It represents an
iterated item.

Both types of tags have some additional naming
assumptions in order to simplify the syntax of the
generated program. Examples of valid tags are:

• <return1> - meaning the data returned by
the first action in the scenario.

559

www.manaraa.com

• <item>.url - represent the attribute url of
the item.

In addition to the scenarios, the test collection
consists of:

• Action KB: The set of available API func-
tions along with their respective documen-
tation. The information describing the API
functions does not follow a strict pattern.
While some documentation has rich natural
language descriptions or show usage exam-
ples, others are succinct and just contain the
frame and parameter names. The same oc-
curs concerning data format, data type and re-
turning data. This test collection reflects the
variability and heterogeneity that we find in
real-world APIs.

• User KB: A personal user information
dataset, which is necessary to make com-
mands more natural by supporting co-
reference resolution. It allows commands
like “Call John”, once the system can iden-
tify the proper phone number from the User
KB.

An example excerpt of the User KB is described
below:

[
{

"name": "Maria Alice",
"address": "Rua Central, 35,

Rio de Janeiro,
Brasil",

"facebook": "malice",
"group": "classmates",
"mail": "maria@alice.com.br",
"phone": "555 111 222",
"skype": "maria.alice",
"tags": "my wife",
"twitter": "malice"

},
{

"name": "John Sanders",
"address": "7 North Avenue,

New York, USA",
"facebook": "jsanders",
"group": null,
"mail": "john@fam.com",
"phone": "111 555 777",
"skype": "johnjohn",
"tags": null,

id action name(params*)
700000 make a payment(invoice)
600603 send an email(attachment url)
700002 read file content(file)
700003 extract content(info)
503679 convert(to)
700005 get contacts(group)
600490 upload public photo from url(tags)
700006 search image on Flickr(query)
700007 search video on YouTube(query)
600431 create a link post(link url)
601733 post a tweet with image(image url)
700008 tweets from search(search for)
502328 directions(starting)
600352 new item from search(search terms)
600979 share a link(image url)
700009 create calendar item(which day?)
600761 print document(document url)
601535 post message(user name)
500797 convert-file(file)
700011 any new post by someone(user)
600591 any new issue(user)
601206 new article in section(section)
600187 add a bitlink(url)
601732 post a tweet(tweet text)
601888 picture of the day(section)
600840 add photo to album(album name)
600408 new final score(team)
601684 new story from section(which section?)
600596 create an issue(body)
601791 air quality changed(device)
503062 search(depart-date)
502335 check(text)
600326 take snapshots(which camera?)
503155 get-top-definition(hashtag)

Table 2: Examples of action frames used in the
scenarios.

"twitter": "jsanders"
},
...

]

The natural language scenarios, Action KB
and User KB are all described using JSON as
a serialisation format. The Action KB is com-
posed of about 3800 micro-services from Mashape
(mashape.com) and 1900 actions and triggers
from the ifttt.com platform. APIs from
Mashape and ifttt.com are public, and their
instantiation for the challenge was approved by the
platform owners.

Table 2 shows examples of action frames used
in the dataset and Table 3 shows metrics about the
scenarios, actions and the associated natural lan-
guage commands, showing the natural language
signature of the test collection.

560

www.manaraa.com

metric training test total
of scenarios 179 31 210
avg # of sentences per scenario 2.72 2.35 2.66
of actions 374 64 438
avg # of actions per scenario 2.08 2.06 2.08
avg # of params per action 1.59 1.22 1.52
of conditionals in actions 53 14 67
of co-references in actions 124 17 141
of metonymy in actions 94 11 105

Table 3: Metrics about the scenarios, actions and the associated natural language command.

4.1 Annotation
The scenarios containing the natural language
commands were created using high-level task de-
scriptions. These high-level task descriptions were
sent to a crowdsourcing platform (CrowdFlower),
in which workers were requested to express in nat-
ural language the commands which entail the sce-
nario descriptions. Motivated by those scenario
descriptions, the users proposed a set of com-
mands which addresses the specification.

The excerpt below shows an example of a sce-
nario description:

You are arranging a meeting with some
people in Andre’s office. Adamantios is
coming for that meeting, but he does not
know how to drive in Passau. Addition-
ally, you do not know where the office is.

One possible output for that description is:

• Ask Andre for the address of his office;

• Make a map from the university to it;

• Send the map to Adamantios including driv-
ing directions.

For each scenario description, in average ten
workers were invited to suggest the natural lan-
guage commands. The crowdsourcing process
was followed by a data curation process which dis-
carded 70% of the commands due to low quality
issues. The other part of the sample was reviewed
to correct misspelling and adjusted to comply with
the task requirements while preserving the original
syntactic structure and vocabulary.

5 Analysis of The Task Complexity

The task aims to explore vocabulary and syn-
tactic structure variation within the natural lan-

guage commands. It also targets the orches-
tration of different natural language processing
techniques, including syntactic parsing, semantic
role labelling, fine-grained semantic approxima-
tion and co-reference resolution.

5.1 Semantic approximation

Different actions and parameters can be expressed
using distinct lexicalizations (synonymy) and ab-
straction levels. For example:

“If someone reports a problem in
GitHub, send the problem’s headline by
Skype to John.”

In the examples, the action in the knowledge
base is expressed as “any new issue”, while in-
tended “headline” in the returned value is ex-
pressed as “Issue Title”. Given the context, it
is expected the system to be able to identify the
equivalence between the pairs of terms (problem,
issue) and (title, headline).

5.2 Syntactic variation

Additionally, interpreters are expected to cope
with syntactic variation.

“If Manchester United wins, call me.”

“Get ready to call me in the case of vic-
tory of Manchester United.”

5.3 Co-reference and metonymy resolution

The first type of resolution needed is the pronomi-
nal co-reference, where a pronoun refers to a con-
stant which was previously mentioned within the
context of the same scenario. The metonymy reso-
lution consists of using the reference to an attribute
or type to refer to a constant or to a different at-
tribute of a constant. For example:

561

www.manaraa.com

Figure 2: The scenario creation workflow.

“If an issue is created, send its content
to the Tech Manager.”

This excerpt shows both cases. The bold its
makes reference to an issue, while Tech Manager
is a metonymy for the Tech Manager’s email (san-
dra@andrade.com.br according to the user KB).

6 Evaluation

The final dataset contains commands and their as-
sociated mappings to the Action KB. Given a com-
mand in natural language, it is expected that the
participating systems provide:

• The correct action;

• The correct mapping of text chunks in the
natural commands to parameters;

The participating systems were evaluated con-
sidering four criteria:

1. Resolved individual actions ignoring param-
eter values;

2. Resolved individual actions considering pa-
rameter values;

3. Resolved scenarios ignoring parameter val-
ues;

4. Resolved scenarios considering parameter
values.

Criteria 1 and 2 are quantified by using preci-
sion and recall, while 3 and 4 are quantified by the

percentage of the total number of scenarios which
were addressed.

Participating teams were allowed to use exter-
nal linguistic resources and external tools such as
taggers and parsers.

7 Participants and Results

Initially, nine teams demonstrated interest in the
tasks, but only one participated in the challenge.

Kubis et al. (2017) proposed the EUDAMU
system, which implements an action ranking
model based on TF/IDF and a type matching sys-
tem.

The EUDAMU system is composed of a
pipeline divided into six steps. It starts by pre-
processing the dataset using three tools (NLTK,
Core-NLP and SyntaxNet). In the pre-processing
step, natural language commands are tokenized
and each token is enriched with its lemma, part-
of-speech and named entity labels. Addition-
ally, it also adds the constituent and dependency
structures associated with the commands. The fi-
nal pre-processing step annotates the commands
with types which supports the system to resolve
co-references between the actions and references
from the User KB. The same procedure (with the
exception of the last step) is applied for the Action
KB.

The preprocessing phase is followed by the Dis-
course Tagger, which is responsible for individu-
alising the command from the paragraph descrip-
tion of the scenario. The team implemented this
component using a rule-based approach. The next
step is Action Ranker, which applies a TF-IDF

562

www.manaraa.com

Criterion Metric Value

Individual actions solved ignoring parameter values
precision 0.5490
recall 0.7066

Individual actions solved considering parameter values
precision 0.0533
recall 0.0533

Scenarios solved ignoring parameter values accuracy 41.93%
Scenarios solved considering parameter values accuracy 0%

Table 4: Results from Kubis et al.

model to rank the actions. The model was indexed
using all textual content present in the Action KB,
plus the actions which were mapped with in the
training mappings file. The next step is the Ref-
erence Matcher that is designed to identify which
output of a given action act as the parameters of
a subsequent action. The next step is the Param-
eter Matcher. It infers parameter and value types
which can serve as a support to the action match-
ing process. Finally, based on the knowledge gen-
erated and stored in the previous steps, the rule-
based Statement Mapper provides a list of up to
10 elements of possible matching action instances.
Additional details of the proposed method can be
found in the original paper (Kubis et al., 2017).
Table 4 shows its results.

While the proposed solution has a high re-
call for the number of resolved actions, it fails
mainly in providing the correct value for all the
required parameters. Two types of linguistic set-
tings showed to be more challenging:

• Description of commands split into two sen-
tences. For example:

“Get the price of the book The In-
telligent Investor. If it costs less
than 25 Euros, buy it.”

where “25 Euros” is the parameter value of
the action defined in the first sentence.

• Capturing actions with more specific/fine-
grained semantics. For example:

“Once I have bet my running dis-
tance target of the week, set my
current weight as 100 Kg in Fitbit.”

where the system ignored the temporal
expression“of the week” and suggested
the “Daily step goal achieved” instead of
“Weekly distance goal reached” action. A
second example of the same case is expressed
in the command:

“Suspend the execution of my Sam-
sung washer.”

where the term “Samsung” was ignored when
selecting actions.

8 Summary

In the Semeval 2017 Task 11 we developed a
test collection to support the creation of seman-
tic interpretation methods for end-user program-
ming environments. The test collection focuses on
the following features in comparison with existing
approaches: (i) open domain, (ii) large syntactic
and vocabulary variability, (iii) dependent of co-
reference and metonymy resolution. Moreover, as
the test collection uses APIs available on the open
web, it can be used to build real end-user pro-
gramming environments. While there is space for
the improvement of the precision and recall on the
identification of the command actions, the main
challenge remains in the matching of the parame-
ters between natural language commands and the
API.

References

Jayant Krishnamurthy Tom M. Mitchel Amos Azaria.
2016. Instructable intelligent personal. In Proceed-
ings of the Thirtieth AAAI Conference on Artificial
Intelligence. AAAI’16.

Yoav Artzi, Dipanjan Das, and Slav Petrov. 2014.
Learning compact lexicons for ccg semantic pars-
ing. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 1273–1283.
http://www.aclweb.org/anthology/D14-1134.

Emanuele Bastianelli, Giuseppe Castellucci, Danilo
Croce, Luca Iocchi, Roberto Basili, and Daniele
Nardi. 2014. Huric: a human robot interac-
tion corpus. In Nicoletta Calzolari (Conference
Chair), Khalid Choukri, Thierry Declerck, Hrafn

563

www.manaraa.com

Loftsson, Bente Maegaard, Joseph Mariani, Asun-
cion Moreno, Jan Odijk, and Stelios Piperidis, ed-
itors, Proceedings of the Ninth International Con-
ference on Language Resources and Evaluation
(LREC’14). European Language Resources Associ-
ation (ELRA), Reykjavik, Iceland.

Kais Dukes. 2014. Semeval-2014 task 6: Super-
vised semantic parsing of robotic spatial commands.
In Proceedings of the 8th International Workshop
on Semantic Evaluation (SemEval 2014). Asso-
ciation for Computational Linguistics and Dublin
City University, Dublin, Ireland, pages 45–53.
http://www.aclweb.org/anthology/S14-2006.

Kurt Englmeier, Javier Pereira, and Josiane Mothe.
2006. Choreography of web services based on nat-
ural language storybooks. In Proceedings of the 8th
International Conference on Electronic Commerce:
The New e-Commerce: Innovations for Conquering
Current Barriers, Obstacles and Limitations to Con-
ducting Successful Business on the Internet. ACM,
New York, NY, USA, ICEC ’06, pages 132–138.
https://doi.org/10.1145/1151454.1151485.

André Freitas. 2015. Schema-agnostic queries over
large-schema databases: a distributional semantics
approach. PhD Thesis.

Andre Freitas and Edward Curry. 2014. Natural
language queries over heterogeneous linked data
graphs: A distributional-compositional semantics
approach. In Proceedings of the 19th International
Conference on Intelligent User Interfaces. ACM,
New York, NY, USA, IUI ’14, pages 279–288.
https://doi.org/10.1145/2557500.2557534.

George W. Furnas, Thomas K. Landauer, Louis M.
Gomez, and Susan T. Dumais. 1987. The
vocabulary problem in human-system com-
munication. Commun. ACM 30(11):964–971.
https://doi.org/10.1145/32206.32212.

Giovanni Guida and Carlo Tasso. 1982. Nli: a
robust interface for natural language person-
machine communication. International Jour-
nal of Man-Machine Studies 17(4):417 – 433.
https://doi.org/http://dx.doi.org/10.1016/S0020-
7373(82)80042-4.

Marek Kubis, Pawel Skorzewski, and Tomasz Zi-
etkiewicz. 2017. EUDAMU at SemEval-2017 Task
11: Action ranking and type matching for end-user
development. In ”Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2017)”. Association for Computational Linguistics.

Robert Elton Maas and Patrick Suppes.
1985. Natural-language interface for an
instructable robot. International Journal
of Man-Machine Studies 22(2):215 – 240.
https://doi.org/http://dx.doi.org/10.1016/S0020-
7373(85)80071-7.

Bill Z. Manaris and Wayne D. Dominick.
1993. Nalige: a user interface manage-
ment system for the development of natural
language interfaces. International Journal
of Man-Machine Studies 38(6):891 – 921.
https://doi.org/http://dx.doi.org/10.1006/imms.1993.1042.

Christina Niklaus, Bernhard Bermeitinger, Siegfried
Handschuh, and André Freitas. 2016. A sentence
simplification system for improving relation extrac-
tion. In Proceedings of COLING 2016, the 26th In-
ternational Conference on Computational Linguis-
tics: System Demonstrations. The COLING 2016
Organizing Committee, Osaka, Japan, pages 170–
174. http://aclweb.org/anthology/C16-2036.

John F. Pane and Brad A. Myers. 2006. ”End
User Development”, ”Springer Netherlands”, ”Dor-
drecht”, chapter ”More Natural Programming
Languages and Environments”, pages ”31–50”.
https://doi.org/”10.1007/1-4020-5386-X 3”.

Chris Quirk, Raymond Mooney, and Michel Galley.
2015. Language to code: Learning semantic parsers
for if-this-then-that recipes. In Proceedings of the
53rd Annual Meeting of the Association for Com-
putational Linguistics (ACL-15). Beijing, China,
pages 878–888. http://www.cs.utexas.edu/users/ai-
lab/pub-view.php?PubID=127514.

Juliano Efson Sales, Andre Freitas, Brian Davis, and
Siegfried Handschuh. 2016. A compositional-
distributional semantic model for searching com-
plex entity categories. In Proceedings of the
Fifth Joint Conference on Lexical and Computa-
tional Semantics. Association for Computational
Linguistics, Berlin, Germany, pages 199–208.
http://anthology.aclweb.org/S16-2025.

M. Stenmark and P. Nugues. 2013. Natural language
programming of industrial robots. In Robotics
(ISR), 2013 44th International Symposium on. pages
1–5. https://doi.org/10.1109/ISR.2013.6695630.

Jesse Thomason, Shiqi Zhang, Raymond Mooney,
and Peter Stone. 2015. Learning to interpret
natural language commands through human-
robot dialog. In Proceedings of the 24th
International Conference on Artificial Intelli-
gence. AAAI Press, IJCAI’15, pages 1923–1929.
http://dl.acm.org/citation.cfm?id=2832415.2832516.

Matthew R. Walter, Sachithra Hemachandra, Bianca
Homberg, Stefanie Tellex, and Seth Teller. 2014.
A framework for learning semantic maps from
grounded natural language descriptions. Interna-
tional Journal of Robotics Research 31(9):1167–
1190.

564

